使用torchvision,很容易加载CIFAR10数据集。
首先导入库:
import torch
import torchvision
import torchvision.transforms as transforms
torchvision数据集的输出为范围[0,1]的PILImage图像,需要把它们转换成张量,并作归一化(范围[-1,1])处理。
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=0) # windows系统设置num_workers=0
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=0) # windows系统设置num_workers=0
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
下载数据集要花一点时间,请耐心等待:
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data\cifar-10-python.tar.gz
88.7%
接下来,让我们从数据集中显示一些训练图像:
import matplotlib.pyplot as plt
import numpy as np
# 显示图像函数
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# 随机获取一些训练图像
dataiter = iter(trainloader)
images, labels = dataiter.next()
# 显示图片
imshow(torchvision.utils.make_grid(images))
# 打印标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
输出
dog bird horse horse