TensorFlow – 计算图

TensorFlow中的各种操作,如加权求和,激活函数等,都被编排成一个图,称为计算图。这样,一个神经网络就可以用一个计算图来表示。

计算图

计算图从本质上来说,是TensorFlow在内存中构建的程序逻辑图,它定义了实现神经网络所需的变量和操作。计算图定义好后,就可以被执行了。

计算图可以被分割成多个块,并且可以并行地运行在多个不同的cpu或gpu上,这被称为并行计算。因此,计算图可以支持大规模的神经网络。

计算图并行计算

TensorFlow程序元素

下面将逐一讨论TensorFlow程序元素:

Constant/常量

常量的值不变。

Placeholder/占位符

占位符允许稍后赋值,通常用于存储样本数据。

a = tf.placeholder(tf.float32)

feed_dict参数

为占位符提供具体赋值。

Variable/变量

存储可变值,例如可训练参数:权重和偏置。

W = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([-.3], dtype=tf.float32)

x = tf.placeholder(tf.float32)

linear_model = W * x + b

Session/会话

表示计算图一次执行的上下文,也被称为TensorFlow运行时。

后面章节将详细介绍这些概念。



浙ICP备17015664号 浙公网安备 33011002012336号 联系我们 网站地图  
@2019 qikegu.com 版权所有,禁止转载